
How to Effectively Manage and Release Your Drupal Contributions
Derek Wright (dww), DrupalCon Boston, March 2008

Why care about release management?

- Drupal 6 core contains update status
notifications so sites know when to upgrade.
- Proposal for a killer feature in Drupal 7:
"Automatic"(!?!) upgrades.
- If you manage your releases correctly, it
will save you time and hassle.
- It allows people to actually use your code.
- It allows you to handle security problems
quickly and safely.
- It makes it easy for you to keep moving
your code forward and improving it without
making life hell for your users.

Underlying assumptions

- No one is forcing you to do any extra work
or to do anything -- you always scratch your
own itch (or the itches of people paying you).
- No one requires that you put your code on
drupal.org and share it with the world.
- The Drupal project thrives because so
many people contribute their code.

Once you upload your code,
then you have some responsibilities

Putting code on drupal.org implies that you
think people should use it. Therefore:
- You have to be conscious of security
vulnerabilities and be willing to fix them.
- You should clearly state your intentions and
plans as a maintainer so users can prepare.
- You should be aware of your user-base.
- Poorly maintained code contributed to
drupal.org gives Drupal itself a bad name.

Tools for maintainers

There are three primary tools that help you:
- A revision control system (currently CVS)
lets you keep track of changes and is
required to host your code on drupal.org.
- Creating releases (both official releases of
a specific set of code that never changes, or
development snapshots that are rebuilt
automatically). Official releases are best.
- Project nodes on drupal.org allow you to
describe your contribution, show what
versions are recommended to use, and state
your intentions as a maintainer.

Basics of revision control

There are three key concepts to grasp:
- Revision: a specific copy of something. For
example, a particular file in a given state.
Every time you commit a change, you get a
new revision.
- Branch: an isolated set of revisions that are
independent of other branches. Imagine this
is a new directory with its own copy of each
file. You can modify files in one directory
without changing the copies in others.
- Tag: a label or name you give to a given set
of revisions of the files on a certain branch.

Why using branches matters

- Branches allow you to isolate changes and
develop for different versions of core.
- Having stable (bug-fix-only) branches let
you keep part of your code stable so people
using it can run their sites, while you work on
cool new features without fear or hesitation.
- Development snapshot release nodes for
your branches allow testers without CVS to
access your code.
- Release notes can explain your intentions.

Why official releases are better

- An official release is based on a specific
tag which never changes, so everyone
knows exactly what the code is.
- If/when someone reports a bug, you can
use the same code to reproduce and fix it.
- Release notes summarize the user-visible
changes without the full commit history.

How to commit a patch

Before you commit a patch, you should:
1. Ask yourself what branch(es) this patch
should go in (new feature vs. bug fix).
2. Make sure you're working on the branch
you think you are [cvs status].
3. Make sure your copy only has the
changes you think it does [cvs diff].
4. Decide who deserves credit.
5. Write a short but clear commit message
that refers to the issue number, gives credit,
and summarizes/justifies the change.
(See http://drupal.org/node/52287 for more.)

How and when to make a release

- Make a release when you think it's worth it
for your users to upgrade.
- Do not make a new release after every
commit to your code -- don't cry wolf.
- Security fixes (after you've worked with the
security team) get an immediate release.
http://drupal.org/security-team for more.
- Have to use some judgement and sense.
- Beta/RC releases can be very useful.

Releases and Update status notifications

- Update status compares what's installed on
a site vs. what releases are available on
drupal.org to recommend upgrades and alert
administrators if there's a security update.
- Beta or RC releases are marked as "Also
available", as are releases from newer
branches (such as new feature branches).
- If a branch is no longer supported, Update
status will warn users to upgrade.
- You can't "fix" a release and change it --
once it's out, the only fix is a newer release.

Strategies for using CVS HEAD

There are two primary approaches:
1) Keep changing HEAD to follow changes
to the in-development version of Drupal
core. This helps flesh out potential problems
with changes to the core API, and you're
ported as soon as the new core is out.
2) Use HEAD to write new features for an
older, stable version of core. For example, a
6.x-2.* release series while your stable 6.x
code is in the DRUPAL-6--1 branch

Other resources

http://drupal.org/handbook/cvs
http://drupal.org/handbook/cvs/releases
http://drupal.org/handbook/cvs/quickstart
http://drupal.org/patch
CVS: /contributions/tricks/cvs-release-notes

